
Journal of Computational Physics 195 (2004) 790–803

www.elsevier.com/locate/jcp
Another preprocessing algorithm for generalized
one-dimensional fast multipole method q

Reiji Suda *,1, Shingo Kuriyama 2

Department of Computational Science and Engineering, Nagoya University, Japan

Received 19 September 2002; received in revised form 21 October 2003; accepted 22 October 2003
Abstract

The fast multipole method (FMM), which is originally an algorithm for fast evaluation of particle interactions, is

also effective for accelerating several numerical computations. Yarvin and Rokhlin proposed ‘‘generalized’’ FMM using

the singular value decomposition (SVD), which gives the optimum low-rank approximation. Their algorithm reduces

the computational costs of the FMM evaluation and frees the FMM from analytical approximation formulae. How-

ever, the computational complexity of the preprocessing for an N � N matrix is OðN 3Þ because of the SVD, and it

requires orthogonal matrices of the low-rank approximations. In this paper we propose another preprocessing algo-

rithm for the generalized FMM. Our algorithm runs in time OðN 2Þ even with the SVD and releases the low-rank

approximations from orthogonal matrices. The triangularization by the QR decomposition with sparsification, which

reduces the costs of the FMM more than the diagonalization, is enabled. Although the algorithm by Yarvin and

Rokhlin can be accelerated to OðN 2Þ using the QR decomposition, our preprocessing algorithm outperforms it in fast

spherical filter, fast polynomial interpolation and fast Legendre transform.

� 2003 Elsevier Inc. All rights reserved.

AMS: 65F30; 65G99; 65Y20; 43A90/33C55; 86A10

Keywords: Fast multipole method; Low-rank approximation; Computational complexity; Fast matrix–vector multiplication; Fast

spherical harmonic transform; Fast spherical filter; Fast polynomial interpolation
1. Introduction

The fast multipole method (FMM) [1] is originally an algorithm for fast approximate evaluation of
particle interactions, and is also effective for accelerating several numerical computations, such as poly-
qThis research is partly supported by Research for the Future Program of JSPS and Grants-in-Aid for Scientific Research of MEXT.
*Corresponding author. Present address: Department of Computer Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,

Tokyo 113-0033, Japan. Tel./fax: +81-3-5841-4099.

E-mail address: reiji@is.s.u-tokyo.ac.jp (R. Suda).
1 Currently with the University of Tokyo.
2 Currently with Nippon Steel.

0021-9991/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2003.10.018

mail to: reiji@is.s.u-tokyo.ac.jp


R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803 791
nomial computations [2] and integral transforms [3,4]. Recently, two algorithms using one-dimensional

FMM are proposed for fast solution of partial differential equations on spherical geometries – fast spherical

filter [5] and fast spherical harmonic transform [6] – which are expected to be breakthroughs to very large-
scale climate simulations.

Yarvin and Rokhlin [7] proposed a ‘‘generalized’’ one-dimensional FMM, meaning no use of analytic

formula but of the optimum algebraic approximation by the singular value decomposition (SVD). The

generalized FMM not only reduces the computational costs of the FMM evaluation, but also has potential

of higher applicability to accelerating numerical computations.

However, the preprocessing algorithm by Yarvin and Rokhlin requires OðN 3Þ time for an N � N matrix,

while the evaluation of the FMM requires only OðNÞ time in the best cases. That high computational

complexity of the preprocessing, which comes from the complexity of the SVD, will be prohibiting in large-
scale applications where the speed of the FMM is most effective. The pivoted QR decomposition [8] must be

used as the low-rank approximation to reduce the computational complexity into OðN 2Þ.
In this paper we propose another preprocessing algorithm for the generalized FMM. Our preprocessing

algorithm runs in time OðN 2Þ even with the SVD on the assumption that the FMM evaluation runs in time

OðNÞ. It does not require orthogonal matrices of the low-rank approximations unlike the Yarvin–Rokhlin

algorithm, and thus provides more freedom to the low-rank approximations. We can utilize that freedom in

triangularization by the QR decomposition with sparsification, which reduces the floating point operation

count of the FMM. The diagonalization [7] is also known as of similar effects, but the triangularization
outperforms it. We will evaluate the performance of our algorithm in fast spherical filter, fast polynomial

interpolation and fast Legendre transform.
2. Our preprocessing algorithm

This section describes our preprocessing algorithm. The reader is assumed to be familiar with the ori-

ginal analytical FMM [1]. The preprocessing algorithm of the generalized FMM by Yarvin and Rokhlin
will also be mentioned in contrast with our algorithm.

The FMM is essentially a fast multiplication of a matrix and a vector, and this paper denotes the matrix

to be computed P and assumes its size be N � N . There is no difficulty to apply our algorithm to rectangular

matrices.
2.1. Low-rank approximation and the SVD

The generalized FMM is based on low-rank approximations. For an n� m matrix A, a low-rank ap-
proximation is a decomposition of the form

A � XY ;

where X is an n� p matrix, Y is a p � m matrix, and p is the rank of the approximation. Then a matrix–

vector multiplication Ab can be approximated as

Ab � X ðYbÞ:

The intermediate vector Yb corresponds to an expansion of the FMM, and thus the matrices Y and X creates

and evaluates the expansion, respectively. The complexity of the computation X ðYbÞ is Oðpðmþ nÞÞ. It is
smaller than OðnmÞ, which is the complexity of the direct computation of Ab, if the rank p is small enough
compared to n and m.



792 R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803
The SVD provides a low-rank approximation of the minimum rank for a prescribed precision in the

2-norm (and in the Frobenius norm) [8]

kA� XY k2 6 �:

The most frequently used procedure to compute the SVD is a combination of the Householder bidiago-

nalization and the QR iteration [9]. The former consumes most of the computational time, and its com-

putational complexity is Oðnm2Þ for an n� m matrix.

In the preprocessing algorithm by Yarvin and Rokhlin, submatrices of P are compressed by the SVD.

The size of the largest submatrix is n � m ¼ OðNÞ, thus the computational complexity of the SVD for that

submatrix is OðN 3Þ. Our preprocessing algorithm applies the SVD to matrices whose numbers of columns m
are bounded by a constant. This is the reason of the low computational complexity of our algorithm.

2.2. Construction of the forest of the subdomains

The first step of the preprocessing is the definition of the forest of the subdomains. Here the simplest

scheme is presented. Some modifications can be introduced to enhance the performance of the FMM.

We use terminology of graph theory without notice. Since one-dimensional FMM is discussed, we use

the terms ‘‘subdomain’’ and ‘‘interval’’ interchangeably, and also the corresponding set of indices of the

matrix P is meant by those words.
Assume that the entries of the matrix P are defined by points of one-dimensional space as

Pij ¼ f ðxi; yjÞ:

All the examples in Section 3 and in the paper by Yarvin and Rokhlin are of this kind. Let a ¼ minfxi; yjg
and b ¼ maxfxi; yjg so that the interval ½a; b� contains all the points. That interval is divided into four

intervals (subdomains) of equal sizes, which become the roots of the forest of subdomains. Each of those

root intervals is divided into two intervals of equal sizes, which are the children of that interval. The re-

sulting intervals are recursively divided until the number of points included in each interval becomes less

than a prescribed threshold. That process results in a forest of subdomains with four binary trees.

The parent of an interval I is denoted by IP, and its two children are denoted by ICL and ICR. For each
interval I the far-field region FI is defined. FI includes the intervals of the same depth as I but excludes I and
the two adjacent intervals.

2.3. The definitions of the expansions

The second step of the preprocessing is the definitions of the matrices to generate and evaluate ex-

pansions. In our preprocessing algorithm the matrices are defined in the same order as the FMM evaluation

procedure: The far-field expansions from the leaves to the roots, and the local expansions from the roots to

the leaves.
The expansions approximate submatrices of P . To facilitate presentation this section uses the following

notations of submatrices. For a matrix A, ½A�R denotes the submatrix with rows restricted to region R, where
R consists of an interval or some intervals. Similarly ½A�R denotes a submatrix whose columns are restricted

to region R, and ½A�R
0

R denotes a submatrix that is restricted in rows and columns. Using those notations, the

far-field expansion of an interval I is to approximate ½P �IFI , and the local expansion approximates ½P �FII .
2.3.1. Far-field expansions for leaf intervals

The far-field expansion of an interval I approximates the submatrix ½P �IFI . The far-field expansion of each
leaf interval is defined by approximating that submatrix as a low-rank approximation as



R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803 793
½P �IFI � EICI : ð1Þ

The matrix CI is called the far-field expansion creation matrix and EI is called the far-field expansion

evaluation matrix.

Those matrices are exactly the same as the Yarvin–Rokhlin algorithm, except that Yarvin and Rokhlin

restrict CI of orthogonal rows. The evaluation matrix EI is not used in the algorithm by Yarvin and

Rokhlin, but we use it to define other expansions.

The precision of the low-rank approximation (1) should be controlled as

kEICI � ½P �IFIk6 �;

where � is the precision parameter.

Remark. In our algorithm the error of every approximation is bounded by �. Thus the total error of the

FMM can be bounded by a�, where a is the number of approximations. However, the actual total error is

usually much smaller than the bound a�. A practical scheme to control the total error is reconstructing the

data structure of the FMM with modifying the parameter � so as to bring the total error closer to the

prescribed value.

Yarvin and Rokhlin scale the approximation error bound � by the matrix norm kPk and the size of the

submatrix nm, but they did not show any reasoning or optimality of that scaling. In place of scaling by kPk,
we introduce an application-driven scaling in Section 2.4. We do not scale the error bound by the size of the
submatrix (like the analytical FMM).

2.3.2. Far-field expansions for non-leaf intervals

Next, the far-field expansion is defined on each non-leaf interval I . While the algorithm by Yarvin and

Rokhlin approximates the submatrix ½P �IFI directly, our algorithm uses the expansions of the children ICL
and ICR. The key equation here is

½P �IFI ¼ ð ½½P �ICLFICL
�FI ½½P �ICRFICR

�FI Þ:

To see that it is enough to note FI � FICL , FI � FICR and I ¼ ICL þ ICR.
First assume that the children are leaves. From (1) the children have approximations:

½P �ICLFICL
� EICLCICL ;
½P �ICRFICR
� EICRCICR :

Therefore, we have

½P �IFI � ð ½EICL �FI ½EICR �FI Þ
CICL 0

0 CICR

� �
: ð2Þ

In our preprocessing algorithm the first factor of the right-hand side

QI ¼ ð ½EICL �FI ½EICR �FI Þ ð3Þ

is approximated as a low-rank approximation

QI � EI
�MI : ð4Þ

The matrix �MI generates the far-field expansion of I from those of the children.



794 R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803
The far-field translation matrices MICL and MICR are obtained by dividing �MI according to the assembly of

QI (3) as

�MI ¼ ðMICL MICR Þ:

The far-field expansion creation matrix CI , which represents the computation of the far-field expansion from

the input vector, should be defined as

CI ¼ �MI
�CI ; ð5Þ

where �CI is the second factor of the right-hand side of (2)

�CI ¼
CICL 0
0 CICR

� �
:

From (2) and (4) the submatrix ½P �IFI is approximated as

½P �IFI � QI
�CI � EI

�MI
�CI ;

where the second approximation is the one defined in (4). Thus the error of the low-rank approximation of

(4) should be controlled as

kEI
�MI

�CI � QI
�CIk6 �: ð6Þ

A scheme to control the error of the low-rank approximation in the above form will be discussed in Section

2.4.

In the algorithm by Yarvin and Rokhlin, the far-field expansion creation matrix CI is first generated

using the SVD as (1), then the translation matrices are defined as

�MI ¼ CI
�CT
I ; ð7Þ

which gives the best approximation of MI
�CI � CI in Frobenius norm on the condition that �CI has or-

thogonal rows. They showed that it gives reasonably good approximation for ½P �IFI � EI
�MI

�CI .
In the Yarvin–Rokhlin algorithm �CI must be of orthogonal rows, but in our algorithm the low-rank

approximation (4) can be anything that satisfies (6). Thus our algorithm gives more freedom to the low-

rank approximations than that of the Yarvin–Rokhlin algorithm.

In both algorithms the creation matrix CI and the evaluation matrix EI are defined so that the submatrix

½P �IFI is approximated as

½P �IFI � EICI ð8Þ

that coincides with (1). Thus the far-field expansions of the intervals with non-leaf children can be defined in

the same way as the above.

Repeating the above procedure from the intervals next to the leaves to the root intervals, the far-field

expansion creation, translation and evaluation matrices are defined for all the intervals.

The algorithm by Yarvin and Rokhlin computes a low-rank approximation for ½P �IFI , which becomes

larger for a larger interval. For a root interval I , the size of ½P �IFI is about N=4� N=2 or N=4� N=4, and the

SVD requires time of OðN 3Þ. Our algorithm computes low-rank approximations for QI , whose columns are

much fewer than that of ½P �IFI .

2.3.3. Local expansions for root intervals

The local expansion of an interval I approximates the submatrix ½P �FII . First consider the case of a root

interval. The local expansion of a root interval I can be computed from the far-field expansions of the



R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803 795
intervals in its far-field region FI . Here we assume that FI consists of two intervals I0 and I1: The procedure
for general case is easily understood from this example.

Our algorithm is based on the equation

½P �FII ¼ ð ½½P �I0FI0 �I ½½P �I1FI1 �I Þ

which comes from FI ¼ I0 þ I1, I � FI0 and I � FI1 . From (8) we have

½P �FII � ð ½EI0 �I ½EI1 �I Þ
CI0 0

0 CI1

� �
:

Our preprocessing algorithm approximates the first factor of the right-hand side

RI ¼ ð ½EI0 �I ½EI1 �I Þ ð9Þ

as a low-rank approximation

RI � XI
�LI : ð10Þ

The matrix �LI generates the local expansion of I from the far-field expansions of I0 and I1. It is divided
according to the assembly of RI (9) as

�LI ¼ ð TI;I0 TI;I1 Þ

to obtain TI;I0 and TI ;I1 , which are called the far-field to local interaction matrices. The matrix XI is called the

local expansion evaluation matrix.

The local expansion creation matrix HI is defined as

HI ¼ �LI
�HI ; ð11Þ

where �HI is defined as

�HI ¼
CI0 0

0 CI1

� �
;

so that the approximation is expressed as

½P �FII � XIHI : ð12Þ

Since the approximation of the submatrix ½P �FII is

½P �FII � RI
�HI � XI

�LI
�HI ; ð13Þ

the error of the low-rank approximation (10) should be controlled as

kXI
�LI

�HI � RI
�HIk6 �: ð14Þ

In the Yarvin–Rokhlin algorithm, the local expansion evaluation matrix is first computed as (12) with
restriction that XI has orthogonal columns using the SVD. Then the far-field to local interaction matrices

are computed as

�LI ¼ X T
I ½P �

FI
I
�HT
I ; ð15Þ

which gives the best approximation for ½P �FII � XI
�LI

�HI on the assumption that XI has orthogonal columns
and HI has orthogonal rows. That directly corresponds with (13).



796 R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803
2.3.4. Local expansions for non-root intervals

The local expansion of a non-root interval I is computed from the local expansion of the parent IP and

the far-field expansions of the intervals in FI � FIP (which is called the interaction list). We assume that
FI � FIP contains three intervals I0, I1 and I2 as an example.

Based on the equation

½P �FII ¼ ð ½½P �FIPIP �I ½½P �I0FI0 �I ½½P �I1FI1 �I ½½P �I2FI2 �I Þ

and using (8) and (12) we have

½P �FII � RI
�HI ; RI ¼ ð ½XIP �I ½EI0 �I ½EI1 �I ½EI2 �I Þ; �HI ¼

HIP 0 0 0

0 CI0 0 0

0 0 CI1 0

0 0 0 CI2

0
BB@

1
CCA ð16Þ

(permutation of columns may be needed, but we ignore that for simplicity). Eqs. (10)–(12) and (14) are used

in the same ways. The matrix �LI defined at (10) is divided according to the assembly of RI (16) as

�LI ¼ ð LI TI ;I0 TI;I1 TI;I2 Þ;

where LI is called the local expansion translation matrix.
This procedure is repeated from the intervals next to the roots to the leaf intervals. The preprocessing is

finished when the local expansion interaction, translation and evaluation matrices are computed for all the

intervals.

In the Yarvin–Rokhlin algorithm, first the local expansion evaluation matrix XI is computed by the SVD

as (12), and then the local expansion translation matrix is defined as

LI ¼ X T
I ½XIP �I ; ð17Þ

which gives the best approximation for XILI � ½XIP �I , assuming that XI has orthogonal columns. That gives

reasonably good approximation for XILIHIP � ½XIP �IHIP , which coincides with our approximation.

2.4. The error control and scaling

The low-rank approximation in our algorithm should satisfy (6) and (14). However, it is difficult to

control the error of a low-rank approximation in the form of matrix multiplication as those. Although we

have

kEI
�MI

�CI � QI
�CIk6 kEI

�MI � QIkk�CIk

for consistent matrix norms, that inequality is usually too loose.

We propose to tighten the above inequality by scaling

kEI
�MI

�CI � QI
�CIk6 kðEI

�MI � QIÞSkkS�1 �CIk; ð18Þ

where S is a diagonal matrix whose elements are the norms of the rows of �CI . Making S�1 �CI , that is, making
the norms of the rows of �CI unity, is the simplest scaling strategy to improve the condition number of �CI

[10]. We found that this simple scaling makes the inequality (18) tight enough for practical use. Now we can

control the precision of the low-rank approximation as

kEI
�MIS � QISk6 �=kS�1 �CIk; ð19Þ

where the multiplication by S causes no difficulty since it is easy to invert.



R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803 797
To reduce the computational cost the value kS�1 �CIk may be replaced by its lower or upper bound. They

are 1 and
ffiffiffiffi
m

p
in the 2-norm, where m is the number of rows of �CI .

The above scheme of error control is applicable to the FMM itself as follows. Assume that the matrix P
is used in a linear computation Z as

Z ¼ APB;

where A and B represents the computations after and before the FMM. Let us represent the computation of

P via FMM as ~P . Then the error of the fast computation ~Z ¼ A~PB can be bounded as

k~Z � Zk6 �

by controlling the error of the FMM as

kSA~PSB � SAPSBk6 �=ðkAS�1
A kkS�1

B BkÞ;

where SA and SB are diagonal matrices which makes the norms of the columns of AS�1
A and those of the rows

of S�1
B B unity. The above scheme determines the precision of the FMM from the requirements of the

application. If some entries of SA and/or SB are small, then lower relative precision is allowed in the cor-

responding part of the FMM. The numerical examples in Section 3 use this scheme to control the errors of

the FMM.

2.5. The computational complexity

Next consider the computational complexity of our preprocessing algorithm. We assume that the FMM

runs most efficiently, as is the case of an N � N Cauchy matrix

Pij ¼
1

yi � xj
;

where the ranks of the low-rank approximations are bounded by a constant p, the number of the intervals is

OðNÞ, and the number of the points contained in a leaf interval is OðpÞ ¼ Oð1Þ. Then our preprocessing

algorithm runs in time OðN 2Þ even using the SVD.

Construction of the forest of the subdomains. The subdomains, the forest of them and the far-field regions
are defined in the same way as the original FMM, and they require OðN logNÞ time.

Low-rank approximations. Next consider the computational complexity of the computations of the low-

rank approximations (1), (4) and (10).

Let n� m be the size of the matrix to be approximated. For (1) the matrix to be approximated is ½P �IFI .
The size of the matrix is given as

n ¼ jFI j ¼ OðNÞ;
m ¼ jI j ¼ Oð1Þ;

where the latter comes from the assumption that the number of the points in a leaf interval is Oð1Þ. For QI

of (4), n ¼ jFI j ¼ OðNÞ is clear and m ¼ OðpÞ ¼ Oð1Þ comes from the assumption that the ranks of the low-
rank approximations EICL and EICR are bounded by a constant p. Similarly for RI of (10) we have n ¼ OðNÞ
and m ¼ Oð1Þ.

Thus we have n ¼ OðNÞ and m ¼ Oð1Þ for all matrices to be approximated. Because the SVD requires

time Oðnm2Þ, each low-rank approximation is computed in time OðNÞ.



798 R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803
The low-rank approximations are computed twice (for the far-field expansion and the local expansion)

for each subdomain. Since we assume the number of the subdomains be OðNÞ, the total computational

complexity of computing the low-rank approximations can be bounded by OðN 2Þ.
Computations of the creation matrices. Next consider the costs of the computations of the creation

matrices (5) and (11).

First consider (5), that is a multiplication of �MI and �CI . Let n� m be the size of �MI and m� l be the size
of �CI . Because we have n6 p ¼ Oð1Þ, m6 2p ¼ Oð1Þ and l6N , that multiplication can be computed in time

OðNÞ.
Similarly HI can be computed in time OðNÞ. Since there are OðNÞ subdomains, the total time to compute

the creation matrices is bounded by OðN 2Þ.
Computations of the scaling matrices. We need the scaling matrix S in the error control scheme of the low-

rank approximation (18).

Letting m� l be the size of �CI , we have m ¼ Oð1Þ and l ¼ OðNÞ as is discussed in the previous para-

graph. Thus the direct computation of the norms of the rows of �CI requires OðNÞ time.

We can prove that the scaling for a local expansion is computed in time OðNÞ as well. Since there are

OðNÞ expansions, the total computational complexity for the scaling is OðN 2Þ.
The value kS�1 �CIk is used in (19). We have proposed to neglect it in Section 2.4, because it lies in the

range of ½1; ffiffiffiffi
m

p � and we have m ¼ Oð1Þ. It could be computed using the power method, but that seems to

cost too much.
The total computational complexity. Summing up the above, the computational complexity of our pre-

processing algorithm is bounded by OðN 2Þ for a Cauchy matrix. If the FMM evaluation is not efficient as

OðNÞ, then the computational costs of our algorithm increase accordingly, but we did not perform any

analysis for such cases.

2.6. Low-rank approximations by the QR decomposition

Low-rank approximations can be obtained using the pivoted QR decomposition (QRD) [8]. The pivoted
QRD does not always give a low-rank approximation of the minimum rank, but its computational com-

plexity is much lower than the SVD. If it terminates at rank p for an n� m matrix, then the computational

complexity is OðnmpÞ, which is much smaller than that of the SVD Oðnm2Þ assuming that the rank p is

smaller than m (and n).

2.6.1. Triangularization and sparsification

We noted that the matrix R of a low-rank approximation by the QR decomposition A � QR is triangular,

and thus the computational costs of the FMM evaluations can be reduced by skipping computations of the
zeros. Let us call that reduction of computational costs ‘‘triangularization’’.

The diagonalization [7] is an improvement of similar effects. It diagonalize one of the far-field to local

interaction matrix of each interval by multiplying appropriate matrices to the related translation/interaction

matrices.

The effects of the diagonalization and the triangularization can be compared as follows. Choose an

interaction matrix, and let the rank of its far-field expansion be pF and that of the local expansion be pL.
The diagonalization removes the off-diagonal entries of the interaction matrix of size pF � pL, thus the

number of the generated zeros is pFpL �minfpF; pLg. The triangularization removes only lower diagonal
entries, but it is applicable to the both of the far-field and local expansions independently, and thus gen-

erates pFðpF � 1Þ=2þ pLðpL � 1Þ=2 zeros. Therefore, the two schemes are of equal performance for pF ¼ pL,
but otherwise the triangularization works better.

In many cases several elements of the last row of R in a QRD have very small magnitudes. Drop-

ping such elements the computational costs can be further reduced. We call this scheme the QRD with



R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803 799
sparsification (QRS). The QRS is not useful in the algorithm by Yarvin and Rokhlin where the matrices are

multiplied as (7), (15) and (17) and the zero elements disappear. Our preprocessing algorithm uses the

matrix as it is, and thus the sparsification can reduce the computational costs.

2.6.2. Combinations of the SVD and the QRD

The pivoted QRD does not always give the optimum rank. This disadvantage can be remedied using the

SVD. After computing the low-rank approximation by the SVD

A � XY ;

the QRS is computed for Y ,

Y � QR:

Letting Z ¼ XQ, we have a low-rank approximation A � ZR, whose rank is that of the SVD. The precision
of the QRS should be controlled as

kX ðY � QRÞk6 �� kA� XY k:

We call this scheme SVD-QRS, which is SVD with triangularization and sparsification. The SVD-QRS

requires more computational time, but the efficiency of the resulting low-rank approximation is higher than

the QRS, as is shown in the next section.

The combination in the reverse order, the QR-SVD, is also possible and results in the SVD accelerated by

the QRD. In this case, the QR decomposition A � QR is computed first as

kA� QRk6 �Q; ð20Þ

then the SVD R � XY is computed as

kQðR� XY Þk6 �� kA� QRkP �� �Q: ð21Þ

If �Q is small enough, e.g. 0:01�, then the influence of the approximation errors of the QRD is very small,

and almost the same rank is attained as the direct SVD for A. The computational complexity is almost the
same as the QRD. Assume that the rank of the QRD be pQ, then the QRD runs in time OðnmpQÞ and the

SVD runs in time Oðmp2QÞ. Thus the costs of the SVD is smaller than those of the QRD if pQ is much less

than n. Thus the QR-SVD gives approximations of almost minimum rank with computational costs similar

to the QRD.

Using the QR-SVD, the preprocessing algorithm by Yarvin and Rokhlin runs in time OðN 2Þ. Thus the
Yarvin–Rokhlin algorithm and ours are actually of the same order of computational complexity. In the

next section, we will compare these algorithms in some numerical experiments.
3. Numerical results

This section reports the results of some numerical experiments. We implement the preprocessing algo-

rithm by Yarvin and Rokhlin and ours in C language. The programs are compiled by gcc with option -O4

and run on a machine with COMPAQ alpha 21264A 750 MHz CPU. We have three applications of FMM

to compare preprocessing algorithms.

The first application is the fast spherical filter [5,7] for m ¼ 0. It consists of a pair (l ¼ 0; 1) of FMM
applications



800 R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803
P ðlÞ
ij ¼

cðlÞij

x2i � x2j
;

which are Cauchy matrices scaled by

cð0Þij ¼ cwi
�PnðxiÞ�Pnþ2ðxjÞ;

cð1Þij ¼ �cwi
�Pnþ2ðxiÞ�PnðxjÞ;

where �PnðxÞ is the normalized Legendre polynomial, wi is the Gaussian weight and c is a constant. The

diagonal entries P ðlÞ
ii are defined by l�Hospital�s rule. The points xi are the Gaussian points, and thus the

distribution of the evaluation points fx2i g is not uniform but regular.

The second application is the Lagrange polynomial interpolation, on which the fast spherical harmonic

transform is based [6]. The matrix P is as

Pij ¼
aibj

yi � xj
;

which is a Cauchy matrix scaled by

ai ¼
YN
j¼1

ðyi � xjÞ;
bj ¼
Y

16 k6N ; k 6¼j

ðxj � xkÞ�1
:

The evaluation points fxj; yig are equispaced, and the sampling points fxjg are chosen so that the numerical

stability is optimized [6]. Many sampling points fxjg are close to the either ends, and the interpolation

points fyig are located around the center. Thus the distributions of the points are quite non-uniform.

Table 1 tabulates the results for the fast spherical filter, which are the average of the two FMM ap-

plications. The absolute errors of the filter are shown in the column EA. We made several experiments with
varying the parameter � around the prescribed value EA and the error k~P � Pk2 is computed by the power

method.

Table 2 tabulates the results for the fast polynomial interpolation. Here ER represents the relative error

k~P � Pk2=kPk2 computed by the power method. The parameter � is set around ER=kPk2.
Table 1

The experimental results for the fast spherical filter

EA N Yarvin–Rokhlin Ours

TYS TYQ SYS TSS TSQ SSS SSQ SS0

10�6 50 0.002 0.002 0.69 0.002 0.001 0.74 0.74 0.69

100 0.010 0.008 0.93 0.009 0.004 1.05 1.04 0.98

200 0.044 0.026 1.47 0.038 0.016 1.65 1.64 1.54

400 0.235 0.096 2.67 0.122 0.055 2.89 2.87 2.80

800 1.693 0.415 5.07 0.429 0.206 5.39 5.36 5.32

10�10 50 0.002 0.002 0.60 0.002 0.001 0.64 0.63 0.60

100 0.007 0.005 0.76 0.005 0.002 0.83 0.83 0.78

200 0.035 0.023 1.05 0.031 0.012 1.19 1.19 1.10

400 0.210 0.100 1.73 0.129 0.054 1.89 1.88 1.82

800 1.616 0.483 3.12 0.508 0.253 3.32 3.31 3.28



Table 2

The experimental results for the fast polynomial interpolation

ER N Yarvin–Rokhlin Ours

TYS TYQ SYS TSS TSQ SSS SSQ SS0

10�6 50 0.010 0.007 1.42 0.009 0.003 1.56 1.56 1.49

100 0.047 0.026 2.38 0.035 0.015 2.59 2.58 2.52

200 0.215 0.087 4.35 0.115 0.049 4.63 4.62 4.54

400 1.537 0.367 8.16 0.397 0.192 8.55 8.50 8.44

800 17.16 2.206 15.63 1.490 0.938 16.30 16.23 16.21

10�10 50 0.007 0.006 1.09 0.005 0.002 1.21 1.21 1.15

100 0.034 0.023 1.67 0.029 0.012 1.80 1.80 1.75

200 0.201 0.096 2.76 0.122 0.052 3.00 2.99 2.93

400 1.547 0.448 5.11 0.453 0.226 5.39 5.38 5.35

800 17.32 2.750 9.62 2.460 1.245 10.11 10.09 10.09

R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803 801
In both tables N represents the problem size. The number of the root intervals and the depth of the forest

are optimized for each instance. The diagonalization is used in the Yarvin–Rokhlin algorithm.

The average times (in seconds) for the preprocessing are shown in the columns T�, where the used

algorithm is designated in the subscription:

• YS for the original Yarvin–Rokhlin algorithm,

• YQ for the Yarvin–Rokhlin algorithm accelerated by QR-SVD,

• SS for ours with SVD-QRS,
• SQ for ours with QRS.

We can see that the preprocessing times are OðN 3Þ for the Yarvin–Rokhlin algorithm with SVD and OðN 2Þ
for the others. The times for the Yarvin–Rokhlin algorithm accelerated by the QR-SVD and ours with the

SVD-QRS are similar, and those of our algorithm with the QRS is about half of them. The preprocessing

time for the fast spherical filter is shorter than that for the polynomial interpolation, perhaps because of the

difference of the distribution of the points.

The columns S� provide the speed-up rates of the fast algorithms against the direct computation in the

number of floating point operations. Here the costs of the preprocessing are not included, and this index is
intended to evaluate the efficiencies of the resulting FMM, especially of the effects the diagonalization and

the triangularization. The precise speed-up rate for the prescribed precision EA or ER is estimated by in-

terpolating the experimental results. The speed-up rates for YQ are not shown because they are almost the

same as those of YS, which means that the QR-SVD gives almost the same ranks as the SVD. The QRS

gives better speed-up rates than the diagonalization. The differences between the speed-up rates for the

SVD-QRS and the QRS are small, perhaps because the QRD gives good low-rank approximations for

Cauchy matrices and the sparsification reduces the difference between the QRD and the SVD.

Our algorithm includes another improvement that some local expansions are computed directly (not
from far-field expansions) and some far-field expansions are evaluated directly (without transformed into

local expansions). The speed-up rates without this improvement (using QRS) are shown in the column SS0.
This improvement is effective, but the effects get smaller in large problems.

We do not compare the speed-up rates of the two problems or with those of the other papers [5,7]

because the definitions of the speed-up rates and the errors are different.

The third application is the fast Legendre transform, that is, the fast spherical harmonic transform for

m ¼ 0 [6]. Table 3 gives the results, where N is the total wave number, E� is the observed relative error, and

S� is the speed-up rate of the Legendre transform. The value of s� gives the time for the whole preprocessing
of the fast Legendre transform, which includes the computations of the Legendre functions, the approxi-

mation error control, the optimization of the numerical stability, the generation of the matrices for the



Table 3

The experimental results for the fast Legendre transform

N Yarvin–Rokhlin Ours

EYS sYS TYS SYS ESS sSS TSS SSS

1023 1.06e) 10 260 31.2 1.564 1.04e) 10 370 15.3 1.616

1365 1.13e) 10 771 84.8 1.664 1.45e) 10 935 29.7 1.790

2047 1.34e) 10 2170 347 2.049 1.37e) 10 2297 69.1 2.172

2730 1.60e) 10 6158 945 2.353 1.86e) 10 5760 157 2.538

4095 3.56e) 10 22,004 5572 3.029 3.65e) 10 16,051 452 3.233

802 R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803
FMM, the preprocessing of those FMM, and so forth. The fast Legendre transform algorithm contains

many FMM instances, and T� gives the sum of the preprocessing times of the FMM instances in the fast

Legendre transform. The evaluation points are the Gaussian points, and the number of points is

approximately 3N=2.
The total preprocessing time of our algorithm sSS is larger than that with the Yarvin–Rokhlin algorithm

for N 6 1365. The authors guess that the longer s comes from the higher efficiency of our FMM imple-

mentation, because the preprocessing algorithm of the fast Legendre transform uses the branch-and-bound
algorithm to minimize the computational costs of the transform, and it searches for deeper branches when

the FMM gives higher efficiency. However, the situation is reversed for larger problems because of the high

computational complexity of the Yarvin–Rokhlin algorithm. Our algorithm gives better speed-up for every

size with almost the same precision. The superiority of our algorithm is clear.
4. Summary

This paper has proposed another preprocessing algorithm for the generalized FMM. The preprocessing

algorithm by Yarvin and Rokhlin requires time OðN 3Þ when it is coupled with the SVD, but ours runs in

time OðN 2Þ even with the SVD. We have proposed the triangularization by the QR decomposition with

sparsification, which enhances the efficiency of the FMM evaluation. Our algorithm enables this by freeing

the low-rank approximation from the orthogonality.

The triangularization by the QRD can be introduced to the Yarvin–Rokhlin algorithm in place of the

diagonalization, and the sparsification is also possible. However, the error controls (6) and (14) are

inconsistent against the error controls of the expansions of the Yarvin–Rokhlin algorithm.
This paper and the one by Yarvin and Rokhlin [7] apply the ‘‘generalized’’ FMM to Cauchy matrices to

which the analytical FMM is applicable. We plan to apply the generalized FMM to the fast spherical

harmonic transform [6], which splits the associated Legendre functions to enable the fast polynomial in-

terpolation. Because the split doubles the computational costs, the performance will be improved if the

generalized FMM accelerates the non-polynomial interpolation.
References

[1] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987) 325.

[2] A. Dutt, M. Gu, V. Rokhlin, Fast algorithms for polynomial interpolation, integration, and differentiation, SIAM J. Numer.

Anal. 33 (1996) 1689.

[3] J.P. Boyd, Multipole expansions and pseudospectral cardinal functions: a new generation of the fast Fourier transform, J.

Comput. Phys. 103 (1992) 184.

[4] B. Alpert, V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions, J. Sci. Stat. Comput. 12 (1991) 158.

[5] R. Jakob-Chien, B.K. Alpert, A fast spherical filter with uniform resolution, J. Comput. Phys. 136 (1997) 580.



R. Suda, S. Kuriyama / Journal of Computational Physics 195 (2004) 790–803 803
[6] R. Suda, M. Takami, A fast spherical harmonics transform algorithm, Math. Comp. 71 (2002) 703.

[7] N. Yarvin, V. Rokhlin, A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics,

J. Comput. Phys. 147 (1998) 594.

[8] G.W. Stewart, Matrix Algorithms, Basic Decompositions, vol. 1, SIAM, Philadelphia, PA, 1998.

[9] G.H. Golub, C.F. van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.

[10] N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA, 1996.


	Another preprocessing algorithm for generalized one-dimensional fast multipole method
	Introduction
	Our preprocessing algorithm
	Low-rank approximation and the SVD
	Construction of the forest of the subdomains
	The definitions of the expansions
	Far-field expansions for leaf intervals
	Far-field expansions for non-leaf intervals
	Local expansions for root intervals
	Local expansions for non-root intervals

	The error control and scaling
	The computational complexity
	Low-rank approximations by the QR decomposition
	Triangularization and sparsification
	Combinations of the SVD and the QRD


	Numerical results
	Summary
	References


